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SUMMARY 

er, stress-intensity factors and load-line displacements have 

been calculated for chevron-notched bar and rod fracture specimens using a 

three-dimensional finite-element analysis. 

simulated wedge loading (either uniform applied displacement or uniform 

applied load). 

straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 

0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. 

Both specimens were subjected to 

The chevron-notch sides and crack front were assumed to be 

The bar specimens had 

a height-to-width ratio of 0.435 or 0.5. 

of singularity elements around the crack front and 8-noded isoparametric 

elements elsewhere. 

intensity factors were calculated by using a nodal-force method for distri- 

bution along the crack front and by using a compliance method for average 

values. 

sented and compared with expe imental solutions. from the literature. 

stress-intensity factors and load-line displacements were about 2.5 and 5 per- 

cent lower than the reported experimental values, respectively. 

Finite-element models were composed 

The models had about 11,000 degrees of freedom. Stress- 

The stress-intensity factors and load-line displacements are pre- 
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INTRODUCTION 

The chevron-notched specimens [1,2], shown in Figure 1, are small 

fracture toughness specimens being considered for use in standard tests by the 

American Society for Testing and Materials (ASTM) Committee E24. Because they a# 

are small (5 to 25 mm thick) and because they require no fatigue precracking, 
d 

they are well suited for quality control and materials toughness evaluation 

specimens. Currently, these specimens' can only be used for high-strength 

alloys, ceramics, and other such low toughness brittle materials. Further 

advances in elastic-plastic fracture' mechanics are needed to use these 

specimens for ductile materials. 

The unique features of a chevron-notched specimen, over conventional 

frecture-toughness specimens, are: (1) the extremely high stress concen- 

tration at the tip of the chevron-notch, and (2) the development of a minimum 

stress-intensity factor as the crack grows. The high stress concentration at 

the tip of the chevron-notch causes a crack to initiate at a low applied load, 

eliminating the need to precrack a specimen, a costly and time consuming 

procedure. The minimum stress-intensity factor allows the fracture toughness 

to be evaluated from this failure (maximum) load without the need to make a 

load-displacement record, such as currently used in the ASTM E399 plane-strain 

fracture toughness (Krc) test procedure. 

Experimental compliance calibrations of the chevron-notched bar (short 

bar) and rod (short rod) specimens have been done by Barker and Guest [33, 

Munz et al. [4], Bubsey et al. [SI, Shannon et ale [6], and Barker [7 ]  for the 

determination of stress-intensity factors. In addition to the experimental 

calibrations, several analytical attempts have been made. Munz et al. [4] 

used a quasi-analytical procedure (slice model) developed by Bluhm [8] to 

analyze the chevron-notched bar specimen. Again, they determined stress- 
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intensity factors from the compliance method. But, the experimental and 

analytical compliance methods give only an "average" 

along the crack front for each crack configuration considered. 

three-dimensional analyses are required to determine stress-intensity factor 

variation along the crack front. Beech and Ingraffea [ 9 ]  used a three- 

dimensional finite element method to determine stress-intensity factor 

distributions along the crack front and stress-intensity factors from 

analytical compliance for the chevron-notched rod (w/B = 1.5). 

front evaluations of stress-intensity factors, however, were in considerable 

disagreement (6 to 17 percent) with their values determined from compliance. 

But their analytical compliance values were in good agreement with experi- 

mental compliance results. 

stress-intensity factor 

More rigorous 

Their crack 

In this paper, stress-intensity factors and load-line displacements have 

been calculated by a three-dimensional finite-element analysis [lo] for 

chevron-notched bar (square and rectangular) and rod fracture specimens. The 

specimens were subjected to simulated wedge loading (either uniform applied 

displacement or uniform applied load). 

front were assumed to be straight. 

(a/w) ranged from 0.4 to 0.7. 

or 2. The bar specimens had a height-to-width ratio (H/B) of 0.435 or 0.5. 

Stress-intensity factors were calculated by using a nodal-force method [lo] 

for distributions along the crack front and by using a compliance method for 

average values. 

configurations were evaluated. Stress-intensity factors and load-line dis- 

placements are presented and compared with experimental solutions from the 

literature. 

The chevron-notch sides and crack 

Crack-length-to-specimen width ratios 

The width-to-thickness ratio (w/B) was 1.45 

The minimum stress-intensity factors for five particular 
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NOMENCLATURE 

a crack length measured from load line 

initial crack length (to tip of chevron notch) 

b length of crack front 

B specimen thickness (diameter of rod specimen) 

E Younggs modulus of elasticity 

E' equals E for plane stress and E/(1 - $) for plane strain 

F boundary-correction factor determined from nodal-force method 

FC 

*m 

H 

KI 

P 

VL 

"T 

W 

V 

boundary-correction factor determined from compliance method 

minimum boundary-correction factor from compliance method 

half of specimen height (radius of rod specimen) 

stress-intensity factor (mode I) 

applied load 

displacement at load point 

displacement at top of specimen along load line 

specimen width 

Cartesian coordinates 

Poisson's ratio 

ANALYSIS 

S tress-intensity factors and load-line displacement for the chevron- 

notched bar and rod specimens, shown in Figure 1, were obtained by using a 

three-dimensional finite-element analysis [lo]. In this analysis, Poisson's 

ratio was assumed to be 0.3. The coordinate systcm used to define the 

chevron-notched specimens is shown in Figure 2. The specimens are loaded by a 

knife-edge loading fixture 141 that results in an applied load, P, at point 

rr 

5 

L, as shown in Figure 2(a). Specimens may have either a square notch [4] at 

the load line or a V-notch [7 ]  at the load line (not shown). Only the square 
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notch detail was considered herein. . The slot height (0.03B) is for a saw 

blade to cut the chevron-shaped notch. In the present model, the slot height 

was assumed to be zero. The chevron was modeled and was assumed to have 

straight sides. Initial crack length, 

to the chevron tip (see Fig. 2(b)). The crack length, a, and specimen 

width, w, are measured from the load line. The crack front (b) was assumed 

ao, is the distance from the load line 

to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 

to 0.7. The following table gives the speciraen dimensions of configurations 

analyzed herein: 

Specimen w/B ao/w H/B 

Bar 1.45 0.332 0.435 

Bar 1.45 0.332 0.5 

Rod 2 0.2 0.5 

Rod 1.45 0.332 0.5 

Rod 2 0.2 0 .5 

The configurations with H/B = 0.5 have been selected for possible 

staddarization 

Two types 

combination to 

by ASTM Committee E24. 

Finite-Element Idealization 

of elements (isoparametric and singular [lo]) were used in 

model the specimens. Figure 3(a) shows a typical finite- 

element model for the chevron-notched bar. The model idealized one-quarter of 

the specimen and employed about 11,000 degrees of freedom (2,960 elements). 

The isoparametric eight-noded hexahedron elements were used everywhere except 

at the crack front, where eight singularity elements shaped like pentahedrons 

were used. The singularity elements produced a square-root singularity in 
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stress and strain at the crack front. A typical finite-element pattern on the 

crack plane is shown in Figure 3(b) a 

a/w ratio of O e 5 5 .  

This view shows the crack plane for an 

One-half of the specimen thickness (B) was modeled with 

10 layers. Figures 3(c) and 3(d) show an end view of the bar and rod ri* 

specimen, respectively. The notch height was at 0.35H. 

To evaluate the finite-element mesh pattern used around the crack front 

in the three-dimensional models, two- and three-dimensional finite-element 

analyses of through-the-thickness edge cracks subjected to wedge loading were 

also analyzed. The two-dimensional analysis used a mesh pattern identical to 

the front view (2: 0 plane) shown in Figure 3(a). The three-dimensional 

analysis used the same model as that used for the chevron-notched specimens 

except that the singularity elements extended all the way across the specimen 

thickness* 

Boundary Conditions and Applied Loading 

Symmetry boundary conditions were applied on the z = 0 plane (see 

Fig. 3) .  On the y = 0 plane, all nodes were free except those that lie in 

the shaded region. Here, symmetry boundary conditions were applied. (The 

intent of the fixed-node condition on the y = 0 plane was t o  prescribe zero 

v-displacements for the shaded area. Because of the rectangular mesh 

idealization in the y = 0 plane, however, the v - 0 condition was only 

approximately achieved at locations along the edge of the shaded area. This 

is approximate because the chevron edge (edge of the shaded area) crossed 

elements that had one or more free nodes.) 

wedge loading at point L in Figure 2(a). The loading was either a uniform 

applied load or a uniform applied displacement across the thickness. 

The specimens were subjected to 
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Stress-Intensity Factors 

Two methods were used to obtain stress-intensity factors. In the first 

method, the stress-intensity factor distributions along the crack front from 

the f inite-element models were obtained by using a nodal-f orce method, details 

of which are given in references 10 and 11. In this method, the nodal forces 

normal to the crack plane and ahead of the crack front are used to evaluate 

the stress-intensity factors. 

The mode I stress-intensity factor, KI, at any point along the crack 

front was taken to be 

where F was determined from the nodal-force method. 

In the second method, an "average" stress-intensity factor along the 

crack front was obtained from specimen compliance as 

for the applied load case where E' * E for plane stress or 

E' = E/(1 - 3) for plane etrain. The total strain energy of the 

specimen, Us alculated by 

PiVi12 
i=1 

where Pi and Vi are the load and displacement, respectively, for the 

n nodes along the load line in the finite-element models. The stress- 

intensity factor from compliance was written as 

P KI = - Fc ( 5 )  
BSw 

and, therefore, equating equations (2) and (4) gives 

(3) 

(4) 

I (E' dU)1/* 
FC b da 
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The dU/da in equation ( 5 )  was determined from the values of U evaluated at 

different crack lengths, a. Consider three crack lengths (ai < a < ak) and 
their corresponding total strain energies, Ui, Uj, and uk. The strain 

energy was fitted to a second degree polynomial in terms of crack length as 

j 

* 

The dU/da at crack length aj was determined by 

This slope 

correction 

was used in equation ( 5 )  to evaluate the stress-intensity boundary- 

factor at crack length a j* 

RESULTS AND DISCUSSION 

In this section, two- and three-dimensional analyses are used to evaluate 

the accuracy of the finite-element model presented earlier (see Fig. 3) .  

Next, a convergence study is presented for the chevron-notch configuration. 
/ 

Then, the stress-intensity factor variations along the crack front and the 

stress-intensity factors determined from the analytical compliance method 

(en. ( 5 ) )  are presented for various chevron-notch configurations. Finally, 

the stress-intensity factors and load-line displacements from the present 

analyses are compared with experimental solutions from the literature. No 

comparisons are made with Beech and Ingraffea [9]  finite-element analysis 

because different w/B ratios were considered. 

Two- and Three-Dimensional Through-the-Thickness 
Crack Configurations 

The finite-element idealization shown in Figure 3 was evaluated by ana- 

lyzing two- and three-dimensional through-the-thickness crack configurations. 
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These evaluations consisted of studying convergenc-e of stress-intensity 

factors and load-line displacements with mesh refinement in the z = 0 plane 

and in the thickness direction. 

like a double-cantilever beam specimen, was used to arrive at an adequate mesh 

refinement in the z = 0 plane and a three-dimensional through-the-thickness 

crack configuration was used to determine the mesh refinement in the thickness 

A two-dimensional edge-crack configuration, 

direction. 

Two-dimensional configuration.- The finite-element mesh pattern on the 

plane in Figure 3(a) was used to model a wedge-loaded edge-cracked z = 0 

plate under plane-strain conditions. The results from this analysis are 

compared with the results from a boundary-collocation analysis [12] in Fig- 

ure 4. The boundary-collocation analysis was conducted on an edge-cracked 

plate with the same dimensions as those used in the finite-element analysis 

except that the square-notch detail at the load point was not modeled. The 

model used in the collocation analysis was subjected to a line load acting 

over a small segment of the crack surface at x = 0. The solid curves in 

Figures 4(a) and 4(b) show the boundary-correction factor and the normalized 

load-~oint dispP cement, respectively, from the collocation analysis as a 

function of a/w. 

calculated from the finite-element analysis using the nodal-force and 

compliance methods. The correction factors evaluated from the nodal-force 

The symbols in Figure 4(a) show stress-intensity factors 

re about 2 percent er than those calculated from the collocation 

analysis, whereas those obtained from the compliance method were about 

1.5 percent lower. 

finite-element analysis (symbols in Fig. 4(b)) were about 4 percent lower than 

those calculated from the collocation analysis. 

finite-element and boundary-collocation analyses agreed well, the mesh pattern 

The normalized load-point displacements obtained from the 

Because the results from 
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along the z = 0 plane in Figure 3(a) was considered sufficient for use in 

the three-dimensional models. 

Three-dimensional configurations.- To evaluate the three-dimensional 

models, a through-the-thickness crack in a square bar configuration was 

analyzed with 2-, 4-, and 8-equal layers through one-half of the thickness. 

Stress-intensity boundary-correction factors, determined from the nodal-force 

method, are re 5 .  The results in the interior of the specimen 

(2z/B < 0 . 7 5 )  agree within a few percent for all three models. The correc- 

tion factors 

lowest value at the intersection of the crack with the free surface. The 

ecreased from the middle of the specimen (2z/B = 0 )  t o  its 

value at the free surface, however, varied with the number of layers (or layer 

thickness). Hartranft and Sih [I31 have shown that the crack-front singu- 

larity differs from the square-root singularity in a very thin "boundary 

layer" near the free surface and that the stress-intensity factors drop off 

rapidly and equal zero at the surface. Thus, the finite-element method 

employed here cannot adequately evaluate the stress-intensity factors in this 

"boundary layer. 'I But the m9average'' stress-intensity correction factors 

ekness for all three models were in good agreement (2 percent) 

with the plane-strain solution 1121. 

Chevron-Notch Configurations 

- The convergence study in Figure 5 showed that a four-layer 

and yields accurate stress-intensity factors along most of 

the crack front for through-the-thickness crack configurations. However, for 

more complex configurations, such as a chevron-notch specimen, the number of 

layers needed along the crack front may be greater than four. Therefore, two 

models were Considered for a chevron-notched bar configuration (w/B = 2, 

= 0 . 5 5 ) .  The first model had 10 layers across half the specimen thickness 
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with 5 unequal thickness layers along the crack front. 

Figure 3 .  

This model is shown 

The second model had 18 layers, with 8 unequal thickness layers 

in 

along the crack front. 

tributions along the crack front for the 10- and 18-layer models is shown in 

Figure 6. The center of the specimen is at 2z/b = 0. The stress-intensity 

factors for the two models are nearly constant for but increase 

rapidly as the 2z/b approaches unity (edge of chevron). Results from the 

A comparison between the stress-intensity factor dis- 

2z/b < 0.5 

agreed well for 2z/b < 0.9. At the chevron-notch location, 

however, the results were sensitive to layer thickness. Again, as observed in 

the preceding section on the "boundary layer" effect, the finite-element 

analysis cannot adequately evaluate the stress-intensity factors at locations 

where the crack front intersects another boundary. But these results do show 

that the 10-layer model is sufficient to model the chevron-notched 

configurations. 

Loading conditions.- Because the chevron-notched specimens are loaded 

ith either a knife-edged fixture [4] or a pressurized flat jack [14], two 

types of loading con itions were applied to some of the bar and rod con- 

~igu~ations (w/B = 2, 

uniform applied load or a uniform applied displacement along the load line. 

The displacement variations along the load line for the applied load cases 

were ~ e r y  small (less than 0.6 percent from the average). 

applied load, the displacement variations alo 

load case were within 0.6 percent of the displacement from the applied 

displacement case. Likewise, for the same total applied load, the stress- 

intensity factors for the two types of applied loading were in excellent 

agreement (0.1 percent). 

a/w = 0.5 and 0.55). The loadings were either a 

For the same total 

the load line for the applied 

Thus, the type of applied loading has no significant 
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effect on the results. Consequently, all crack configurations considered 

herein were subjected to a uniform applied loading. 

Bar and rod configurations.- The stress-intensity correction factor 

distributions along the crack front for the square bar and rod configurations 

are given in Tables 1 and 2 for various a/w ratios. Some typical results 

* 

h 

for the bar configuration (w/B = 2; H/B = 0 . 5 )  are shown in Figure 7 for 

various a/w ratios. Results for a/w = 0.55 are not shown for clarity. 

The distributions as a function of 2z/b are similar for all a/w ratios 

with the lowest values occurring at the center of the specimen (2z/b = 0) and 

the highest values at the intersection of the crack with the chevron notch 

(2z/b = 1). These values were about 40 percent higher than the values at the 

center of the specimens. 

Because of the rising stress-intensity factor distribution from the 

center of specimen to the edge of the chevron-notch, the crack should grow 

more at the edges of the chevron-notch than at the center of the specimen, 

thus causing a reverse-thumbnailing effect. Experimental results from 

reference 7 confirm this observation. 

A comparison between the stress-intensity factor distributions obtained 

from the three-dimensional finite-element method and from the compliance 

method is sho in Figure 8 .  These results are for the square bar con- 

figuration (w/B = 2) with 

stresa-intensity factors for a11 of the a/w ratios considered. The solid 

symbols show the distribution as a function of 

dash-double-dot lines show values determined for the compliance method 

(eq. ( 5 ) )  assuming either plane-stress or plane-strain conditions, 

respectively. The plane-strain value was about 5 percent higher than the 

plane-stress value. An experimentally determined compliance value [6] 

a/w = 0 . 5 .  This configuration gave the lowest 

2z/b. The dashed-dot and 
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assuming plane-stress conditions is shown as the dashed line. The experi- 

mental value is about midway between the numerical values for plane stress and 

plane strain. But based on the previous two-dimensional results, the 

numerical values from compliance are estimated to be about 1.5 percent lower 

than the "true" values. 

numerical plane-stress value (1.015Fc) would be in very good agreement (about 

1 percent). However, the use of the compliance method is, in itself, an 

a p p r o ~ i m a t ~ o ~ ~  The state-of-stress throughout the specimen is not either 

Thus, the experimental value and the "corrected" 

purely plane stress or purely plane strain. But the induced error is probably 

less than 2 percent. 

Stress-intensity correction factors (F,) determined from compliance 

(plane stress) for the five configurations considered are shown in Figure 9 

for various a/w ratios. For each configuration, these results were fitted 

to a third degree polynomial equation in terms of 

value of the correction factor, 

symbols. The following table compares these minimum values and those obtained 

experimentally in reference 6. 

a/w to find the minimum 

The minimum values are shown as solid Fm. 

Per cent 
Specimen w/B (a/w), Fm 1 .015Fm ym(a) difference 

Bar b 1.45 0.55 27.36 27.77 - 
BarC 1.45 0.54 24.43 24.80 24.85 -0.2 

BarC 2 0.52 29.13 29.57 29.91 -1.1 

Rod 1.45 0.55 28.43 28.86 29.11 -0.9 

Rod 2 0.52 35.40 35.93 36.36 -1.2 

(a)Reference 6 uses Ym to denote correction factor. 
(b)H/B = 0.435, 
(C)H/B = 0.5. 
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The (a/w), value is the crack-length-to-width ratio where the minimum 

F value, Fm, occurred in the compliance analysis. The Fm values deter- 

mined from the finite-element analysis are estimated to be about 1.5 percent 

lower than the "true" solution because the potential energy method gives a 

lower bound solution and because of comparisons made between finite-element 

and boundary-collocation analyses (see Fig. 4(a)). Thus, the "corrected" 

numerical results for both the square bar and rod specimens are about 1 per- 

cent lower than the experimental values [6]. 

Barker [2] selected the rectangular bar specimen (W/B - 0.435) to have 

the same compliance derivative as the rod specimen (w/B = 1.45) and, conse- 

quently, the same boundary-correction factor; that is, Fm was equal to 26.3 

for both specimens. 

as 27.77. This value was close to the finite-element results obtained on the 

rod specimen with 

value. Based on the current analysis, the recommended minimum value is 27.8 

for the rectangular bar specimen with 

The present finite-element results gave a value of Fm 

w/B = 1.45 but was about 4 percent higher than Barker's 

H/B = 0.435. 

Table 3 gives the normalized displacements, EBV/P, at the midplane 

(z = 0) of the specimen for the load point (L) and for the top of specimen (T) 

as a function of a/w (see Fig. 2(a)). Some typical numerical results at the 

top of specimen are compared with experimental results in Figure 10 for the 

rod specimen with 

[5] and numerical results, respectively. These results are consistent with 

w/B = 2. The circular and square symbols show experimental 

the comparisons made on two-dimensional analyses in Figure 4(b), in that the 

finite-element results were about 4 to 6 percent lower than the experimental 

resultse Based on beam theory [l5], however, about 2 percent of this dif- 

ference is caused by neglecting the slot height (0.03B) made by a saw blade or 

chevron cutter (see Fig. 2(a)). 
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Effect of Poisson's ratio.- Most experimental compliance results reported 

in the literature and the analyses reported herein were made with a Poisson's 

ratio of 0.3. However, Barker [7] used fused quartz which has a Poisson's 

ratio of 0.17. 

st~ess-intensity factors a very limited study was made using the rod configu- 

ration with w/B = 1.45 and a/w = 0.55. Four different Poisson's ratios, 

0.0, 0.17, Oe3, and 0.49, were used in the three-dimensional analyses. The 

following table shows the normalized stress-intensity factor at midplane 

(z = 0), the average normalized stress-intensity factor, and the load-line 

displacements for various Poisson's ratios. 

Therefore, to evaluate the effect of Poisson's ratio on 

I 

EBVL EBVT - - 
KBw1/2 I P P Poisson's ratio 

v average 
~~ ~~~~~~ 

0 .o 26.33 28 -03 79.2 77 .5 

0.17 26 e92 28.49 77.9 76.1 

0 e3 27.73 29 020 75.5 73 -6 

0.49 27 e99 29 -12 64.4 63.1 

The normalized stress-intensity factors at the midplane are higher for 

higher Poisson's ratios, and they change as much as six percent as the 

Poisson's ratio charges from 0 to 0.49. 

intensity factors show similar trends but with a smaller change, about 4 per- 

The average normalized stress- 

cent. These results indicate that a specimen with v = 0.17 (fused quartz) 

would have a stress-intensity factor about 2.5 percent lower than a specimen 

with v = 0.3. 
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In contrast to the stress-intensity factors, the load-line displacements 

Also, as Poisson's ratio changes from are lower for higher Poisson's ratios. 

0 to 0.3, the change in the load-line displacements is about 5 percent. But 

as Poisson's ratio changes from 0.3 to 0.49, the load-line displacements 

change by as much as 15 percent. 

CONCLUSIONS 

Three-dimensional elastic finite-element analyses were used to obtain 

stress-intensity factors and crack-opening displacements for chevron-notched 

fracture specimens. Two types of specimens, a chevron-notched bar and rod, 

were subjected to simulated wedge loading (either uniform load or uniform dis- 

placement). The bar specimens had a height-to-width ratio of 0.435 or 0.5.  

In the analyses, the crack fronts and chevron-notch sides were assumed to be 

straight and the slot height for the chevron cutter was taken as zero. The 

crack-length-to-specimen-width ratio (a/w) ranged from 0.4 to 0 .7 .  The width- 

to-thickness ratios (w/B) were 1.45 or 2. Stress-intensity factor variations 

along the crack front for these configurations were obtained by a nodal-force 

method. Also, "average" stress-intensity factors were obtained by a com- 

pliance method. Based on these analyses, the following conclusions were made: 

1. The type of loading, either uniform load or uniform displacement, has 

no significant effect on stress-intensity factors and 

displacements. 

2. The calculated load-line displacements at the top of the specimens 

are about 5 percent lower than reported experimental values. 
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3.  The stress-intensity factor is lowest at the midplane of the specimen 

and highest at the intersection of the crack with the chevron 

notch. For most of the crack front, however, the stress intensity 

factor is nearly constant. 

of the chevron notch. 

The rise occurs in the cl.ose vicinity 

4. The "average" stress-intensity factor obtained from the three- 

dimensional finite-element compliance method (plane-stress) is 

about 2.5 percent lower than reported experimental values for both 

the square bar and rod specimens. 

5 .  The a/w ratio at which the minimum stress-intensity factor occurred 

was between 0.5 and 0.55 for all chevron-notched conf igurations 

analyted 

17 



REFERENCES 

[l] Barker, L. M.: "A Simplified Method for Measuring Plane Strain Fracture 

Toughness," Engineering Fracture Mechanics, Vol. 9, 1977, pp. 361-369. 
% [2] Barker, Le M.: "Short Bar Specimens for KIC Measurements, American 

Society for Testing and Materials," ASTM STP-678, 1979, pp. 73-82. . 
[3] Barker, L. MI; and Guest, R. V.: "Compliance Calibration of the Short 

Rod Fracture Toughness Specimen," Terra Tek Report TR 78-20, 1978. 

241 Munz, D.; Bubsey, R. T.; and Srawley, J. E.: "Compliance and Stress 

Intensity Coefficients for Short Bar Specimens with Chevron Notches 

Useful for Fracture Toughness Testing of Ceramics," International 

Journal of Fracture, Vol. 16, No. 4 ,  1980, pp. 359-374. 

[5] Bubsey, RO T.; Munz, De; Pierce, W. S.; and Shannon, J. L., Jr.: 

"Compliance Calibration of the Short Rod Chevron-Notch Specimen for 

Fracture Toughness Testing of Brittle Materials," International journal 

of Fracture, Vol. 18, No. 1, 1982, pp. 125-132. 

[6] Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; and Munz, D.: 

"Extended Range Stress Intensity Factor Expressions for Chevron-Notched 

Short Bar and Short Rod Fracture Toughness Specimens," International 

Journal of Fracture, Vol, 19, No. 3, 1982, pp. R55-R58. 

[7] Barker, L. M.: "Compliance Calibration of a Family of Short Rod and 

Short Bar Fracture Toughness Specimens," Engineering Fracture 

Mechanics, Vol. 17, No. 4 ,  1983, pp. 289-312. 

[8] Bluhm, J. I.: "Slice Synthesis of a Three-Dimensional 'Work of Fracture' 

Specimen," Engineering Fracture Mechanics, Vol. 7 , 1975, pp. 593-604. 
[9] Beech, J. F.; and Ingraffea, A. R.: "Three-Dimensional Finite Element 

Calibration of the Short Rod Specimen," International Journal of 

Fracture, Vol. 18, No. 3, 1982, pp. 217-229. 

18 



ju, Ie S.; and Newman, J. C., Jr.: "Three-Dimensional Finite-Element 

Analysis of Finite-Thickness Fracture Specimens," NASA TN D-8414, 

'National Aeronautics and Space Administration, Washington, DC, 1977. 

ju, 1. S.; and Newman, J. C., Jr.: "Stress-Intensity Factors for a 

nge of Semi-Elliptical Surface Cracks in Finite-Thickness 

Plates," Engineering Fracture Mechanics, Vol. 11, No. 4, 1979, 

ppe 817-829. 

n, Y. C., Jr.: "Stress Analysis of the Compact Specimen Including 

the Effects of Pin Loading," American Society for Testing and 

Materials, ASTM STP-560, 1974, pp. 105-121. 

[13] Hartranft, R. J.; and Sih, G. C.: "An Approximate Three-Dimensional 

Theory of Plates With Application to Crack Problems," International 

Journal of Engineering Science, Vol. 8, No. 8, 1970, pp. 711-729. 

arker, L. Me: "Short Rod KIc Measurements of A1203," Fracture 

Mechanics of Ceramics, Val. 3, R. C. Bradt, D. P. H. Hasselman, and 

F. F. Lange, eds., Plenum Publishing, 1978, p. 483. 

[15] Timoshenko, S.; and Goodier, J. N.: Theory of Elasticity. Second ed. 

cGr P Book Co., Inc., 1951. 

19 



Table 1.- Boundary-correction factor, F, distributions for 
chevron-notched bar (square) specimens. 

(a) KBwli2/P for w/B = 1.45 

a/w 22 
b 
- 

0.4 0.5 0.55 0.6 0.7 

0 .o 27.95 23.83 23.50 24.45 30.37 

0.5 28.82 24.19 24.08 24.96 30.76 

0.75 30.59 25.69 25.46 26.23 31.84 

0.875 32.45 27.49 27.19 27.90 33.46 

0.9375 33.56 29.49 29.33 30.17 36.09 

1 .o 36.66 32.30 32.30 33.38 40.17 

(b) KBw1l2/P for w/B = 2 

a/w 

0.4 0.5 0.55 0.6 0.7 
22 
b 
- 

0.0 28.28 27.98 28.43 29.33 33.86 

0.5 29.14 28.60 28.93 29.71 33.96 

0.75 31 .ll 30.16 30.27 30.80 34.54 

0.875 33.48 32.21 32.13 32.46 35.78 

0.9375 36.09 35 -00 34.89 35.17 38.43 

P 

1 .o 41.42 40.26 40.17 40.48 44.12 
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Table 2.- Boundary-correction factor, E', distributions 
vron-notched rod specimens. 

(a) KBwli2/P for w/B = 1.45 

a/w 
2: 

_I 

0.4 0.5 0.55 0.6 0.7 b 

0 e o  33.52 27.97 27 -73 28.84 34.19 

0 -5 34.53 28.64 28 * 24 28 -87 34.13 

Oe75 36.60 30.22 29.55 29.89 34.47 

0.875 38.77 32.17 31.30 31.44 . 35.54 

0.9375 40.07 34.37 33.57 33.70 37.80 

1 .O 43.70 37.51 36 e76 37.01 41.56 

d W  

0.4 0.5 0.55 0.6 0.7 
z - 

b 

0 .o 34.68 34.62 35.30 36.44 41.28 

0 * 5  35.59 35.12 35.55 36.42 40.57 

0,75 37.74 36.55 36.55 36.93 39 a85 

0.875 40.40 38 e63 38 a 26 38.22 40.11 

43.40 41.65 41.13 40.86 42.11 

1 .o 49 -61 47.58 46.91 46.46 47.40 
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Table 3.- Normalized displacements as a function of a/w 
for chevron-notched square bar and rod specimens 

a/w 
Type w/B 

0.4 0.5 0.55 0.6 0.7 

Bar(a) 1.45 35.5 47.6 56.2 67.3 103 .O 

Bar(a) 2 55 e5 82.6 99.8 119 .o 174.5 

Rod 1.45 46.9 63.7 75.5 90.2 135.1 

Rod 2 76.3 116.1 141.4 171.3 249.8 

(a)Square bar (H/B = 0.5) 

(b) EBVT/P at midplane (x = z = 0; y = H) 

a l w  
Type w/B 

0.4 0.5 0.55 0.6 0.7 

Bar(a) 1.45 33.9 46 .O 54.6 65.5 101.3 

Bar(a) 2 54 .O 81.1 98.3 118.5 173 .O 

Rod 1,45 45 .I 61.9 73.6 88.3 133.2 

Rod 2 . 74.7 114.4 139 -7 169.6 248.1 

(a)Square bar (H/B = 0.5) 

22 



Figure 1.- Chevron-notched 

(b )  Rod, 

bar and rod specimens. 

r 
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(b )  Y = 0 plane, 
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Figure 2.- Coordinate system used to define dimensions of 
chevron-notched specimens. 
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(a) Finite-element model I 

(b) Element Pattern on Y = 0 plane. 

H 

0 35H 

( c )  End view o f  bar. 

0, 

H 

35H 
._ - 

(d) End view o f  rod, 

Figure 3.- Finite-element idealization of chevron-notched 

x 

bar and rod specimens. 
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Figure 5.- Distribution of boundary-correction factors along 
crack front for through crack in an edge-cracked 
plate using various three-dimensional finite-element 
models e 

27 



F 

50 

40 

30 

20 

10 

0 

Figure 6.- 

Chevron-notched bar 

w/B = 2 

a/w = 0,-55 
H/B = 015 

o 10-layer model 

EI 18-layer model 

0 I 25 15 I75 1 
2z - 
b 

Distribution of boundary-correction factors along 
crack front in chevron-notched bar for two finite- 
element models. 
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Figure 7.-  Distribution of boundary-correction factors along 
crack front in chevron-notched bars with various 
crack-length-to-width ratios. 
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Figure 8.- Comparison of boundary-correction factors from nodal- 
force and compliance methods for chevron-notched bar. 
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Figure 9.- Comparison of boundary-correction factors from 
numerical compliance method for chevron-notched 
bar and rod specimens. 
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